Integrated Economic-Environmental Modeling for Evidence-Based Public Policy and Investment Design

IEEM (Integrated Economic-Environmental Modelling) and CGE Modeling: A Primer

Martín Cicowiez (CEDLAS-UNLP y RMGEO) Onil Banerjee (RMGEO)

Banco Central de Chile Santiago de Chile, Mayo, 2-5, 2023

Introduction

- In this session, we make a discursive (or verbal) presentation of IEEM -- only selected equations are shown.
- The detailed mathematical statement of IEEM can be found in the workshop material and at https://openieem.iadb.org/.
- IEEM is a recursive dynamic Computable General Equilibrium (CGE) model initially developed at the Inter-American Development Bank to analyze medium- and long-term policies.
 - dynamics = endogenous adjustment of factor endowments and stocks of natural resources and productivity
 - follows Dervis et al. (1982) tradition; neoclassical-structuralist; also, relationship with literature incorporating environmental issues in CGE models

What is a CGE Model?

What is a CGE Model?

- In a nutshell, A CGE model is the computer representation of a real economy.
- Mathematically, a CGE model is a system of simultaneous non-linear equations. Types of equations:
 - behavioral (e.g., profit maximizing producers)
 - balance/equilibrium (e.g., savings = investment)
 - definitions (e.g., household income)
- IEEM contains extensions to capture the interaction of the economy with the environment.

What is a CGE Model? – cont.

- <u>C</u>omputable \rightarrow solvable numerically
- General → economy-wide (all production, consumption, investment, and trade that is covered by the national accounts)
- <u>E</u>quilibrium \rightarrow
 - optimizing agents have found their best solutions subject to their budget constraints
 - quantities demanded = quantities supplied in factor and commodity markets
 - macroeconomic balance: receipts = spending for government, balance of payments, and savings-investment balance

What is a CGE Model? – cont.

- CGE models capture all interactions between the components of an economy
 - direct and indirect effects
 - ensure consistency
 - quantitative results (i.e., not just sign)
 - particularly useful when policy and/or external shocks are large.
- Typically, defined as open-economy, economy-wide model with
 - (a) flexible prices clearing most markets
 - (b) one or more production sectors and household groups
 - (c) a government with policy tools (taxes, spending)
- In practice, almost all models are "real" only relative prices matter, not the general price level.

Application Examples

- **Example 1**: increase in worker migration and remittances
 - Direct effect: increased incomes for recipient households
 - Key indirect effects
 - increased demand from recipient households
 - exchange rate appreciation
 - wage pressures in labor market
- Example 2: tariff cuts
 - Direct effect: decline in domestic prices for imported commodities with tariff cut
 - Key indirect effects
 - production and consumption responses to price decline
 - government responses (decreases in spending?; tax increases?; increased borrowing?)
 - responses related to the balance of payments (real exchange rate depreciation?; loss in foreign reserves?; higher foreign borrowing? changes in exports and imports?)

The Production Function: A Digression

Production Function

 The production function is used to model the economyenvironment relationship and to introduce shocks – e.g., productivity changes. Mathematically,

$$QA_a = f_a(L_a, K_a)$$

- where
 - QA_a = output activity a
 - L_a = labor use activity a
 - K_a = capital use activity a
- This production function violates the law of conservation of matter (material balance) -- matter is neither created nor destroyed, it is only transformed.

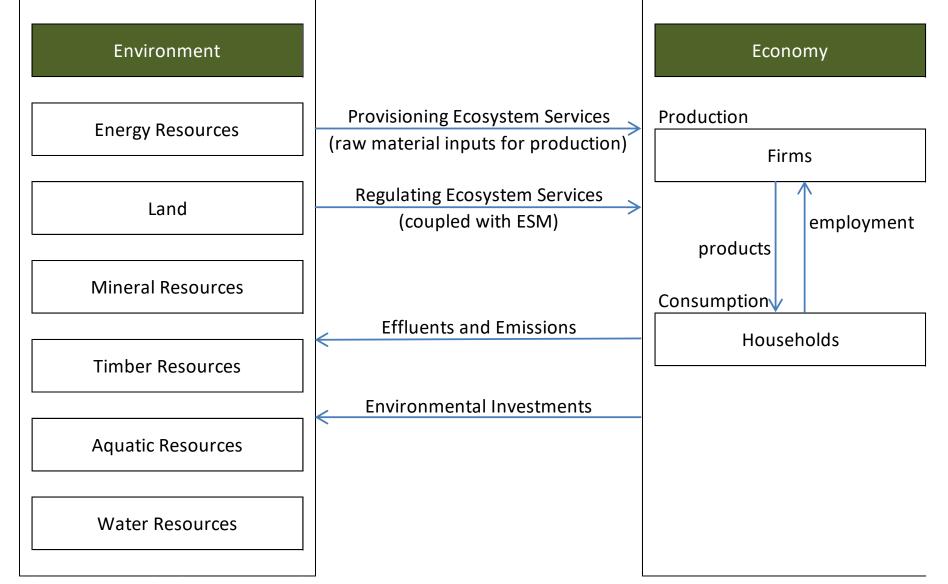
- $QA_a = f_a(L_a, K_a, R_a)$
- where
 - R_a = natural resource use activity a; extracted from the environment
- This production function is widely used in economics of natural resources.

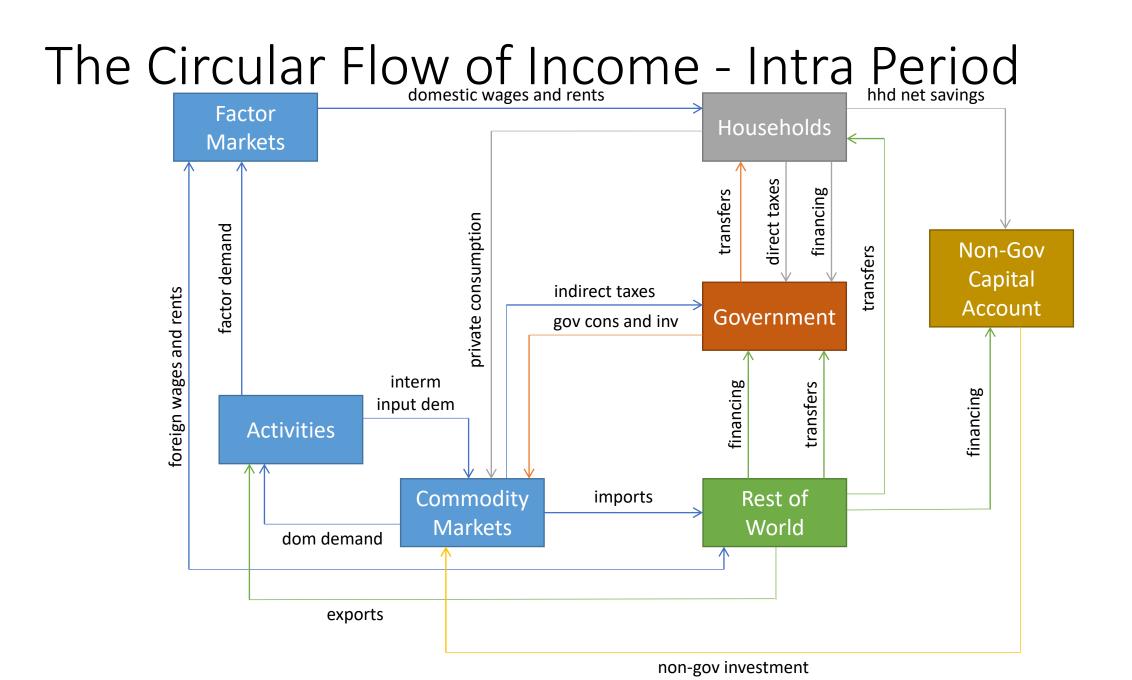
- $QA_a = f_a(L_a, K_a, M_a)$
- where
 - M_a = waste flow activity a; M is input because <M \rightarrow <QA
- This production function is widely used in environmental economics.

- The most general version of the above production function is $QA_a = f_a \left(L_a, K_a, M_a, A \left[\sum_{a'} M_{a'} \right] \right)$
- where
 - A = environmental concentration of any pollutant; depends on total waste emission; then, >A → <QA
- Note: it violates the law of conservation of matter (material balance) matter is created in the form of waste.

• The synthesis "Natural Resource Economics" and "Environmental Economics" generates the production function

$$QA_{a} = f_{a}\left(L_{a}, K_{a}, R_{a}, M_{a}[R_{a}], A\left[\sum_{a'} M_{a'}\right]\right)$$


• where we see material inputs R_a and material outputs M_a y QA_a


$$QA_{a} = f_{a}\left(L_{a}, K_{a}, R_{a}, M_{a}[R_{a}], A\left[\sum_{a'} M_{a'}\right]\right)$$

- In this production function,
 - production has a material base
 - the emission of waste results from that material basis
 - consistent with one of the fundamental laws of nature
 - incorporates possible feedback effects of wastes on production; through environmental concentration of pollutants

IEEM – Short Presentation

Economy and Environment Interactions

Macro SAM Chile 2016 (GDP%)

				-							<u> </u>							
	act	com	marg	f-lab	f-cap	hhd	ent	gov	row	tax	cap-ngov	cap-gov	cap-row	inv-prv	inv-gov	dstk	total	lı h
act		171.9															171.9	f
com	81.7		14.7			63.4		13.8	26.8					20.4	2.4	-0.4	222.8	S
marg		14.7															14.7	
f-lab	38.8								0.0								38.9	
f-cap	50.3																50.3	S
hhd				38.7	13.2		23.6	5.1	0.6								81.2	С
ent					35.9	6.6											42.5	f
gov					1.2	1.9				17.1							20.1	
row		26.4		0.1			2.6	0.0									29.1	а
tax	1.1	9.8				1.7	4.5										17.1	
cap-ngov						7.6	11.9						1.4				20.9	
cap-gov								1.2			0.9		0.3				2.3	
cap-row									1.7								1.7	
inv-prv											20.4						20.4	
inv-gov												2.4					2.4	
dstk											-0.4	0.0					-0.4	
total	171.9	222.8	14.7	38.9	50.3	81.2	42.5	20.1	29.1	17.1	20.9	2.3	1.7	20.4	2.4	-0.4		1

In a SAM for IEEM, we have capital accounts for the institutional sectors. In IEEM application, several activities (act), commodities (com) and factors (f-lab and f-cap)

are usually singled out.

Account in Macro SAM Chile 2016

- act = activities
- com = commodities
- marg = trade and transport margins
- f-lab = labor
- f-cap = capital
- hhd = households
- ent = enterprises
- gov = government
- row = rest of the world

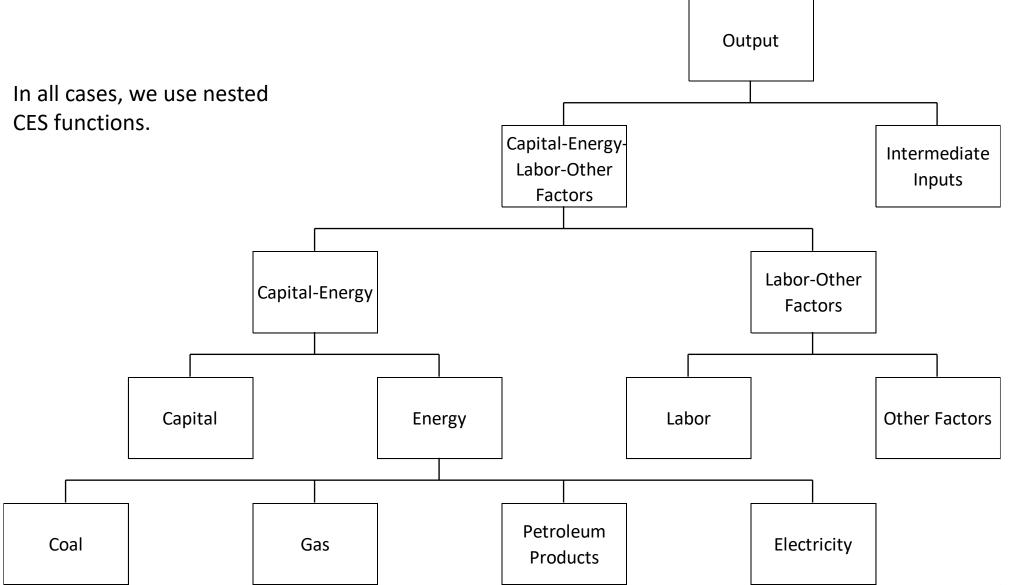
- tax = taxes (indirect and direct)
- cap-ngov = capital account domestic non-government institutions
- cap-gov = capital account government
- cap-row = capital account RoW
- inv-prv = private fixed capital formation
- inv-gov = government fixed capital formation
- dstk = changes in inventories

IEEM as a Standard Model

- IEEM is written as a "standard" (flexible structural) model; i.e., as a model that can be applied to different databases without changes in its GAMS (General Algebraic Modeling System) code.
- The term "database" is defined broadly, among other things covering or identifying:
 - typical model data (SAM, elasticities, labor employment, population, etc.) with application-specific disaggregations;
 - time period for simulations;
 - base scenario GDP growth; and
 - a wide range of assumptions for the base scenario:
 - rules for government and non-government payments; and
 - rules for macro balances (government, rest of the world, savings-investment) and factor markets

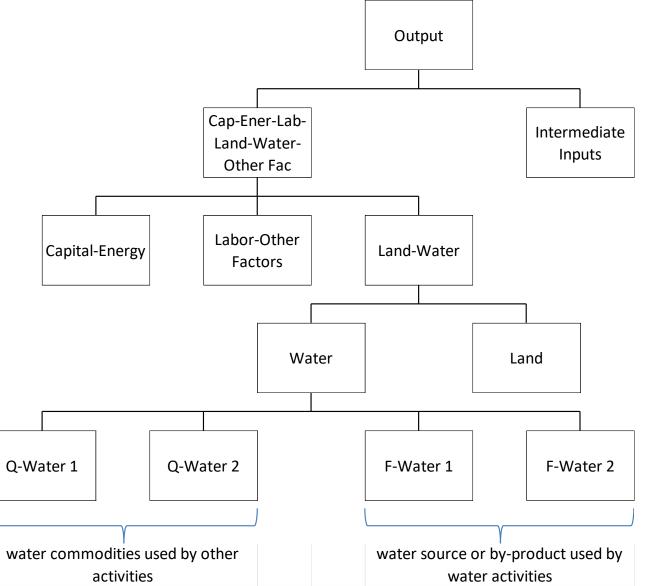
IEEM as a Standard Model – cont.

- To make this possible, the file system has a rigorous separation between model code and database:
 - a generic set of model files in GAMS
 - application-specific files in Excel for the database and simulations
 - anything that is not specific to a database appears in the model code
 - if you want to correct an error, you only need to do it once
 - model code is written to capture what is found in each database.

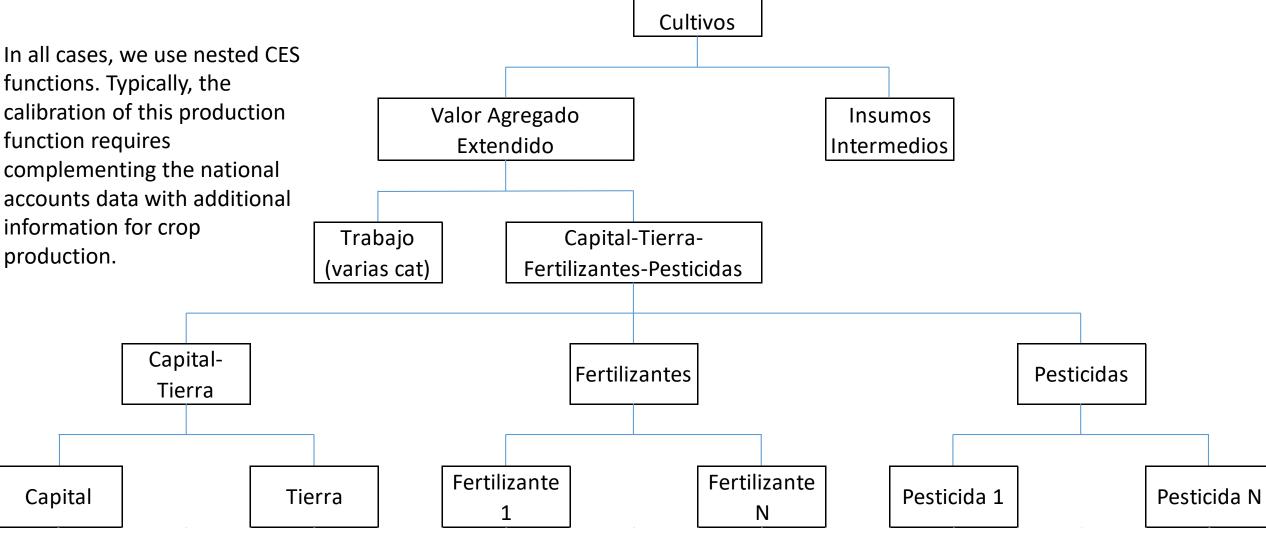

Steps for Conducting Analysis with IEEM

- 1. Base Scenario
 - projection; BaU allows imposing GDP growth; domestic and international exogenous variable trends
- 2. Non-Base (Shocks) Scenarios
 - change policy instrument
 - change parameters such as world prices, water availability, productivity, etc.
- 3. Analyze and Validate
 - explain differences between base and non-base scenarios
 - adjust data and/or simulations
 - write report

Production Function


- In general, the production functions of the different productive sectors are a key element for the analysis of shocks related to natural capital.
- Thus, consider which elements of the production functions could be used for the introduction of shocks.

Production Function: Energy Treatment



Production Function: Water Treatment

In all cases, we use nested CES functions. It is necessary to single out the rent of the natural resource "water".

Production Function: Crops - Fertilizers and Pesticides

Production Function: Mining $QA_{a,t} = A_{a,t} \left(\delta_a^K \cdot QF_{K,a,t}^{-\rho} + \delta_a^L \cdot QF_{L,a,t}^{-\rho} \right)^{\frac{-1}{\rho}}$

$$A_{a,t} = QS_{a,t}^{\eta_a} \cdot \varphi_a$$

$$QS_{a,t} = QS_{a,t-1} - QA_{a,t-1}$$

where the usual notation is used and

- QA = extraction volume
- A = scale parameter
- QS = underground resource stock
- φ = technology parameter
- η = elasticity of production (extraction) with respect to stock

Production Function: Fishing $QA_{a,t} = q_a \cdot QB_{a,t} \cdot E_{a,t}$

$$E_{a,t} = \left(\delta_a^K \cdot QF_{K,a,t}^{-\rho} + \delta_a^L \cdot QF_{L,a,t}^{-\rho}\right)^{\frac{-1}{\rho}}$$

$$QB_{a,t} = QB_{a,t-1} + \left[grwfsh_a \cdot QB_{a,t-1}\left(1 - \frac{QB_{a,t-1}}{kfsh_a}\right)\right] - QA_{a,t-1}$$

where the usual notation is used and

- QB = resource stock (biomass)
- QA = fishing volume
- grwfsh = intrinsic growth rate resource stock
- kfsh = environmental carrying capacity
- E = fishing effort as a function of labor and capital
 - = catchability coefficient coefficient
- A = q.B

q

Production Function: Fishing – cont.

$$QA_{a,t} = A_{a,t} \left(\delta_a^K \cdot QF_{K,a,t}^{-\rho} + \delta_a^L \cdot QF_{L,a,t}^{-\rho} \right)^{\frac{-1}{\rho}}$$

 $A_{a,t} = q_a \cdot QB_{a,t}$

Factor Demands – Simplest Case
$$WFA_{f,a,t} = WF_{f,t} \cdot WFDIST_{f,a,t} \cdot (1 + TFA_{f,a,t})$$
 $f \in FVA$
 $a \in A$
 $t \in T$ $WFDIST_{f,a,t} = wfdistb_{f,a}$ $WFDIST_{f,a,t} = wfdistb_{f,a}$ $WF_{f,t} = wfb_f$ $QF_{f,a,t} = \left(\frac{PVA_{a,t}}{WFA_{f,a,t}}\right)^{\sigma_a^{va}} \left(\delta_{f,a}^{va}\right)^{\sigma_a^{va}} (TFP_{a,t} \cdot \varphi_a^{va})^{\sigma_a^{va-1}} \cdot QA_{a,t}$ $f \in FVA$
 $t \in T$

Imperfect Factor Mobility

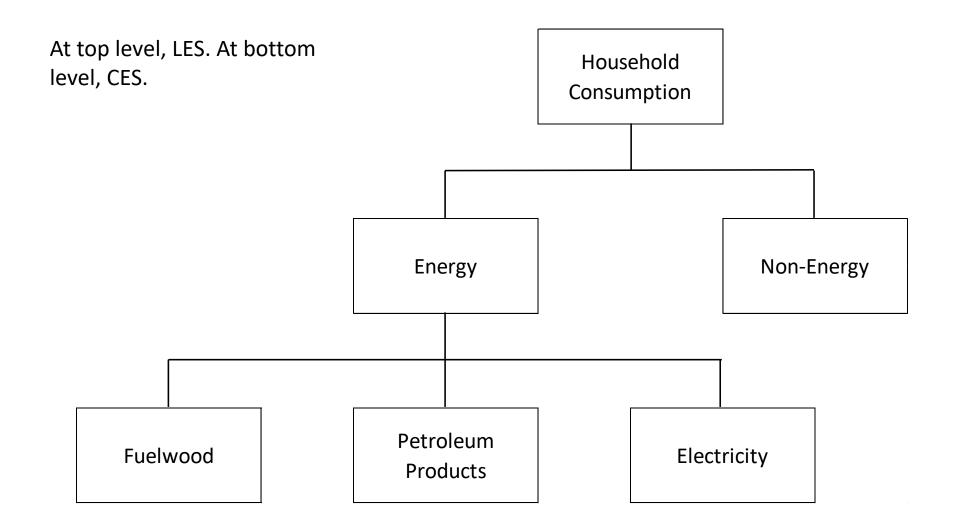
$$\begin{split} WFRAT_{f,f',t} &= \frac{WF_{f',t} \cdot \left(1 - UERAT_{f',t}\right)}{WF_{f,t} \cdot \left(1 - UERAT_{f,t}\right)} & f \in F \\ f' \in F \\ t \in T \end{split}$$

$$\begin{aligned} QFMIGR_{h,f,f',t} &= QFINS_{h,f,t}^{0} \left(\frac{WFRAT_{f,f',t}}{WFRAT_{f,f',t}^{0}}\right)^{\psi} - QFINS_{h,f,t}^{0} & f \in F \\ f' \in F \\ t \in T \end{aligned}$$

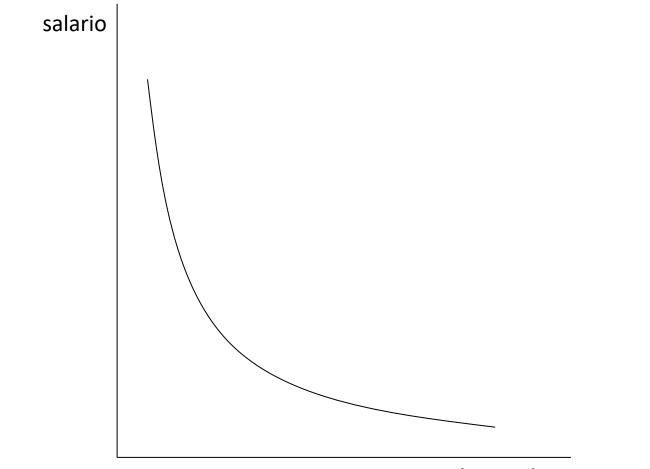
$$\begin{aligned} h \in H \\ f \in F \\ t \in T \end{aligned}$$

$$\begin{aligned} PFMIGR_{h,f,f,t} &= QFINS_{h,f,t}^{0} - \sum_{f' \in MFFP(f,f')} QFMIGR_{h,f,f',t} & f \in F \\ f' \in F \\ t \in T \end{aligned}$$

Imperfect Factor Mobility – cont.


$$QFINS_{h,f,t} = \sum_{f' \in F} QFMIGR_{h,f',f,t}$$

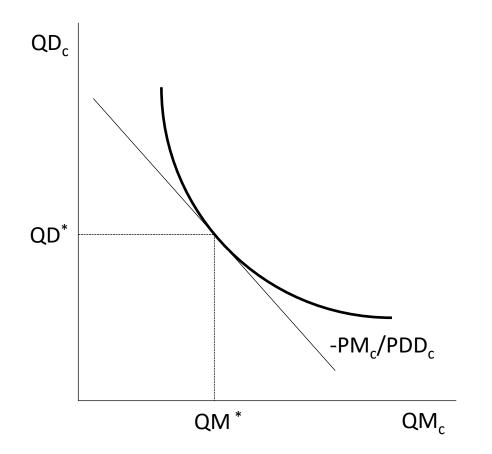
$$QFS_{f,t} = \sum_{h \in H} QFINS_{h,f,t}$$


 $h \in H$ $f \in F$ $t \in T$

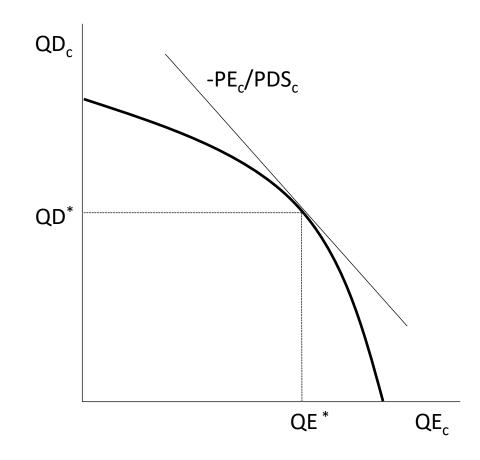
 $f \in F$ $t \in T$

Household Consumption: Utility Function

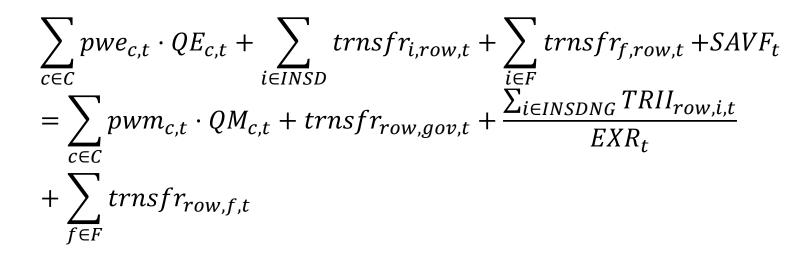
Wage Curve



tasa desempleo


Labor Market

International Trade: Domestic Purchases and Imports

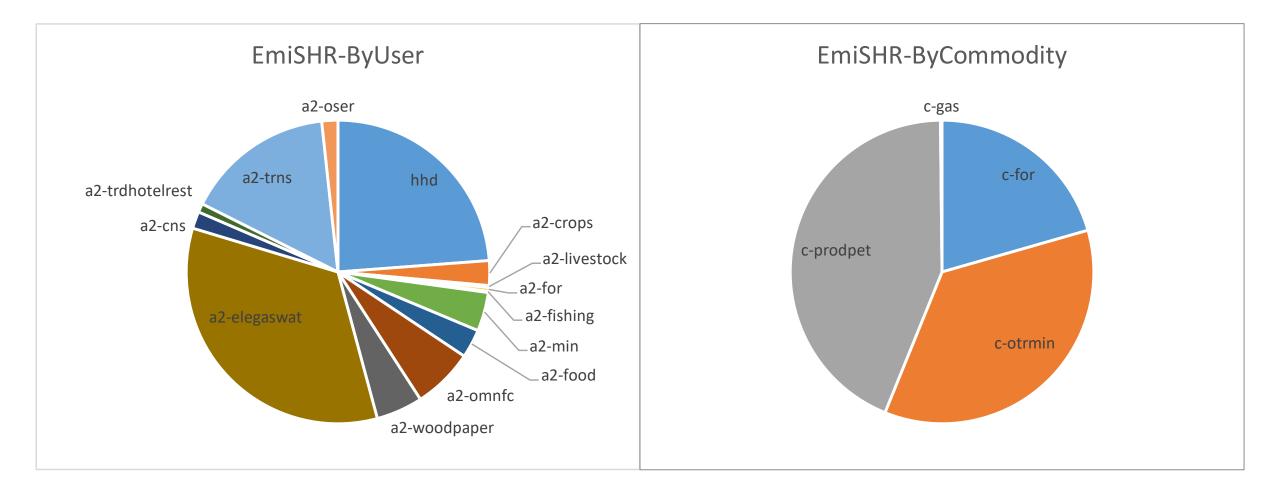


International Trade: Domestic Sales and Exports

Government Budget and Balance of Payments

 $INVG_t = (YG_t - EG_t) + ndfg_t \cdot \overline{CPI}_t + nffg_t \cdot EXR_t$

 $SAVF_{t} = nff_{t} + nffg_{t} + \sum_{f \in FCAPNG} invf_{row,f,t} - drf_{t} + WALRAS_{t}$


$$\begin{aligned} \text{Investment by Activity} \\ wFAVG_{f,t} &= \frac{\sum_{a \in A} WF_{f,t} \cdot WFDIST_{f,a,t} \cdot QF_{f,a,t}}{\sum_{a \in A} QF_{f,a,t}} & f \in FCAPNG \\ t \in T \end{aligned} \\ DKA_{f,a,t} &= \left(\sum_{i \in INSNG} DKINS_{f,i,t}\right) \left(\frac{QF_{f,a,t}}{\sum_{a' \in A} QF_{f,a',t}}\right) & f \in FCAPNG \\ a \in A \\ t \in T \end{aligned} \\ \left(1 + \kappa_f \left(\frac{WF_{f,t} \cdot WFDIST_{f,a,t}}{WFAVG_{f,a,t}} - 1\right)\right) & f \in FCAPNG \\ a \in A \\ t \in T \end{aligned}$$

 $t \in T$ $t \notin TMIN$

Greenhouse Gas Emissions - Products and Factors

 $ghg \in GHG$ $EMI_{ghg,c,a,t} = iemi_{ghg,c,a,t} \cdot QINT_{c,a,t}$ $c \in C$ $a \in A$ $t \in T$ $ghg \in GHG$ $EMI_{ghg,f,a,t} = iemi_{ghg,f,a,t} \cdot QF_{f,a,t}$ $f \in F$ $a \in A$ $t \in T$ $ghg \in GHG$ $EMI_{ghg,c,h,t} = iemi_{ghg,c,h,t} \cdot QH_{c,h,t}$ $c \in C$ $h \in H$ $t \in T$

CO2 Emissions Chile (%) – Energy Balance

Greenhouse Gas Emissions – cont.

In IEEM, emissions from changes in LULC are calculated as follows (IPCC, 2006)

$$\Delta C_{AFOLU} = \Delta C_{FL} + \Delta C_{CL} + \Delta C_{GL} + \Delta C_{WL} + \Delta C_{SL} + \Delta C_{OL}$$

$$\Delta C_{LU} = \Delta A_{LU} \times (F_{AB} + F_{BB} + F_{DW} + F_{SO})$$

$$Emissions = \Delta C_{AFOLU} \times (-\frac{44}{12})$$

- where
 - AFOLU = Agriculture, Forestry and Other Land Use, FL = Forest Land, CL = Cropland, GL = Grassland, WL = Wetlands, SL = Settlements, and OL = Other Land
 - AB = above-ground biomass, BB = below-ground biomass, DW = deadwood (DW), and SO = soils.
 - ΔC = carbon stock change
 - ΔA = change in area in hectares
 - *F* = carbon storage factor
 - $Emissions = Net CO_2$ emissions from land use changes.

Carbon Storage Factors -- Chile

lucode	LULC_name	C_above	C_below	C_soil	C_dead
0	Forest	102	0	0	0
1	Crops	5	0	0	0
2	Shrubs and herbs	2.5	0	0	0
3	Sparse vegetation and bare area	1	0	0	0
4	Snow and ice	0	0	0	0
5	Wetland, water and tidal	0	0	0	0
6	Urban	0	0	0	0

Other Extensions, Distributional Analysis and Interaction with Ecosystem Services Model

- For the forestry sector, some alternatives:
 - exogenous/endogenous deforestation
 - transition from forest land to agricultural/livestock land
 - disaggregation legal/illegal logging; resource rent
- IEEM implements a module to capture waste generation.
- For distributive analysis, relatively simple top-down approach microsimulation model.
- In addition, top-down and TD-BU approach for interaction with ecosystem service models.

Policy Instruments Government

- IEEM provides several instruments to implement public policies.
 - Expenditures:
 - current
 - capital (investment); infrastructure and other
 - Revenues (financing):
 - taxes; "green taxes"
 - transfers from the rest of the world
 - borrowing (domestic and/or external)
- In addition, flexibility to design scenarios; macro closure rule.

Main Results

- IEEM reports the evolution over time of
 - private and public consumption, private and public investment, exports, imports, value added, and taxes
 - all indicators at the national level or disaggregated (by activity, product, and/or type of household)
 - various environmental indicators (e.g., per capita water consumption)
 - genuine savings proxy = savings accounting for natural resource depletion, pollution, and investment in human capital
 - domestic and external debt stocks
 - distributional indicators (poverty and inequality)

Questions that Can Be Answered

- What would happen if...
 - changes in water availability?
 - changes in energy consumption efficiency?
 - changes in deforestation?
 - changes in tax policy?
 - changes in world export/import prices?
 - external debt relief?
 - changes in population growth rate with/without changes in population age structure?
 - alternative patterns of productivity growth in private sectors?

Questions that Can Be Answered – cont.

- What would happen if the government...
 - expands the provision of one or more services with financing from
 - foreign aid
 - taxes
 - domestic/foreign borrowing?
 - shrinks in one area and expands in another with no change in "fiscal space"?
 - becomes more/less productive, adjusting one or more types of spending and/or financing in response?